Thursday, October 3, 2019

Para Ahli Fisika & Penemuannya

1.Albert  Einstein



  Albert Einstein (14 Maret 1879–18 April 1955) adalah seorang ilmuwan fisika teoretis yang dipandang luas sebagai ilmuwan terbesar dalam abad ke-20. Dia mengemukakan teori relativitas dan juga banyak menyumbang bagi pengembangan mekanika kuantum, mekanika statistik, dan kosmologi. Dia dianugerahi Penghargaan Nobel dalam Fisika pada tahun 1921 untuk penjelasannya tentang efek fotoelektrik dan “pengabdiannya bagi Fisika Teoretis”. Setelah teori relativitas umum dirumuskan, Einstein menjadi terkenal ke seluruh dunia, pencapaian yang tidak biasa bagi seorang ilmuwan. Di masa tuanya, keterkenalannya melampaui ketenaran semua ilmuwan dalam sejarah, dan dalam budaya populer, kata Einstein dianggap bersinonim dengan kecerdasan atau bahkan jenius. Wajahnya merupakan salah satu yang paling dikenal di seluruh dunia. Pada tahun 1999, Einstein dinamakan “Orang Abad Ini” oleh majalah Time. Kepopulerannya juga membuat nama “Einstein” digunakan secara luas dalam iklan dan barang dagangan lain, dan akhirnya “Albert Einstein” didaftarkan sebagai merk dagang. Untuk menghargainya, sebuah satuan dalam fotokimia dinamai einstein, sebuah unsur kimia dinamai einsteinium, dan sebuah asteroid dinamai 2001 Einstein.

 
2. Isaac newton



  Sir Isaac Newton adalah ahli fisika, matematika, astronomi, kimia dan ahli filsafat yang lahir di Inggris. Buku yang ditulis dan dipublikasikan pada tahun 1687, Philosophiæ Naturalis Principia Mathematica, dikatakan sebagai buku yang paling berpengaruh dalam sejarah perkembangan ilmu pengetahuan. Karyanya ini menjelaskan tentang hukum gravitasi dan tiga asas (hukum) pergerakan, yang mengubah pandangan orang terhadap hukum fisika alam selama tiga abad kedepan dan menjadi dasar dari ilmu pengetahuan modern. Pada tahun 1670 sampai 1672, Newton memberikan pelajaran tentang optik. Dan selama masa ini, dia sendiri menyelidiki refraksi cahaya (refraksi: perubahan arah dari suatu gelombang akibat perubahan kecepatan) dan memberikan demostrasi bahwa sebuah prisma dapat memecah cahaya putih menjadi berbagai macam spektrum warna dan sebuah lensa pada prisma yang kedua, dapat membentuk spektrum warna tersebut menjadi satu cahaya putih kembali. Isaac Newton menyadari bahwa matematika adalah cara untuk menjelaskan hukum-hukum alam seperti gravitasi, dan membuat beberapa rumus untuk menghitung 'pergerakan benda' dan 'gravitasi bumi'. Gravitasi adalah kekuatan yang membuat suatu benda selalu bergerak jatuh ke bawah. Dengan tiga prinsip dasar dari hukum pergerakan, Newton dapat menjelaskan dan membuktikan bahwa planet beredar mengelilingi matahari dalam orbit yang berbentuk oval dan tidak bulat penuh. Kemudian Newton menggunakan tiga prinsip dasar pergerakan yang sekarang di kenal sebagai Hukum Newton untuk menjelaskan bagaimana benda bergerak.
  Ayah Isaac Newton meninggal tiga bulan setelah Newton lahir, dan dimasa kecilnya, Newton tinggal bersama neneknya. Newton kemudian bersekolah di sekolah desa dan kemudian pindah ke sekoah yang lebih baik di Grantham, dimana disana dia menjadi murid dengan peringkat atas. Saat ini banyak kisah yang menceritakan bahwa Newton mendapatkan rumus tentang teori gravitasi dan sebuah apel yang jatuh dari pohon. Di kisahkan bahwa suatu hari Newton duduk dan belajar di bawah pohon apel dan saat itu sebuah apel jatuh dari pohon tersebut. Dengan mengamati apel yang jatuh, Newton mengambil kesimpulan bahwa ada sesuatu kekuatan yang menarik apel tersebut jatuh kebawah, dan kekuatan itu yang kita kenal sekarang dengan nama gravitasi.

   3.  Galileo Galilei

 

   Galileo Galilei (1564-1642) adalah ahli astronomi Italia, ahli matematika, ahli fisika, guru besar, pengarang, penemu hukum gerak yang kemudian dirumuskan oleh Newton, bapak metode eksperimental, penemu hukum benda jatuh, penemu hukum bandul, penemu thermometer dan teleskop, penemu teori matematik gerak parabola. Ia orang pertama di dunia yang menerapkan matematika untuk menganalisis mekanika. Ia menghubungkan fisika dan astronomi dengan matematika dan tidak dengan filsafat tradisional. Ia menentang pendapat Aristoteles dan Ptolemeus. Sebenarnya orang pertama di dunia yang menemukan teleskop atau teropong adalah Hans Lippershey, ahli optika Belanda, pada tahun 1608. Tapi Lippershey tidak mau menerima patennya. Ketika mendengar hal itu Galileo lalu membuat teleskop sendiri. Mula-mula teleskopnya hanya mampu membesarkan benda 9 kali dan akhirnya berhasil membuat teleskop yang mampu membesarkan benda 33 kali. Dengan teleskop sederhana ini Galileo jadi masyhur karena menemukan cincin Saturnus, empat buah bulan Yupiter, gunung-gunung dan kawah-kawah dibulan. Ia juga menemukan di bawah galaksi sebenarnya gugusan bintang yang berjuta-juta banyaknya.
 Galileo lahir di Pisa,Italia,pada tanggal 15 Febuari 1564 dan meninggal di Arcetri pada tanggal 8 januari 1642 pada umur 78 tahun karena demam. Ia lahir tiga hari sebelum Michelangelo meninggal dan tutup usia satu tahun sebelum Newton lahir. Ayah Galileo bernama Vicenzo Galilei, ahli musik dan matematika. Ia mengharapkan Galileo menjadi dokter. Ketika Galileo berumur 10 tahun, orang tuanya pindah ke Florence, di sini Galileo bersekolah di biara Vallombrosa. Pada umurnya 17 tahun ia disuruh ayahnya masuk Universitas Pisa jurusan kedokteran. Pada suatu hari ia masuk ke Katedral kota itu. Disitu ia melihat lampu gantung yang sedang dinyalakan oleh koster (pelayan gereja). Lampu-lampu itu berayun-ayun karena disentuh koster. Lebar ayunanya bermacam-macam. Galieo menghitung lamanya ayunan dengan denyut nadinya karena waktu itu belum ada alrloji atau alat ukur lainnya. Setiba dirumah ia mengulangi peristiwa itu dengan bola dari berbagai ukuran dan berat. Akhirnya ia menemukan hukum ini: Waktu ayun tidak tergantung pada lebar ayun dan berat bandul, asal lebar ayun tidak terlalu besar. Waktu ayun berbanding lurus dengan panjang bandul dan berbanding terbalik dengan akar percepatan yang disebabkan gaya grafitasi.
  Galileo belajar matematika pada Ostilio Ricci, guru di Istana Tuscana. Ia mulai jemu kuliah kedokteran dan pada umur 21 tahun berhenti kuliah tanpa gelar dokter karena kurang biaya. Ia mulai mengarang karyanya tentang neraca hidrostatik (1586) dan pusat gaya berat pada benda padat (1589) menyebabkan ia terkenal di Italia dan diangkat jadi dosen di Universitas Padua. Ia punya pembantu bernama Maria Gamba. Dengan wanita ini ia mendapatkan dua anak perempuan dan laki-laki.
 Dosen-dosen universitas di seluruh Italia menganggap ajaran Aristoteles dan Ptolemeus paling benar. Aristoteles mengatakan bahwa benda berat jatuh lebih dulu ke bumi dari pada benda ringan. Dan mengatakan bahwa permukaan bulan rata dan memancarkan cahaya. Ptolemes mengatakan bahwa bumi tidak bergerak’ matahari dan bintang-bitang mengelilingi bumi. Tokoh-tokoh agama mengikuti ajaran Ptolemeus karena dalam kitab suci tertulis! Matahari, berhentilah! Kalimat ini disalah tafsirkan bahwa mataharilah yang bergerak bukan bumi. (Bandingkanlah dengan kalimat sehari-hari matahari terbit dan terbenam). Kata orang Galileo menjatuhkan beda berbagai ukuran dan berat dari menara Pisa. Percobaan ini disaksikan oleh para Mahasiswa dan para Ilmuwan. Benda-beda itu jatuh bersamaan di bumi. Dengan ini terbukti bahwa teori Aristoteles tentang benda jatuh keliru. Dengan teleskopnya. Galileo dapat membuktikan bahwa Aristoteles dan Ptolemeus tentang benda-benda angkasa beserta gerak dan susunannya juga salah Galileo memihak dan mendukung teori Copernicus yang mengatakan bahwa matahari pusat tata surya. Oleh karena itu Galileo di tangkap para tokoh agama, diadili, dikenakan tahanan rumah.

4. Charles Augustin de coulomb



 Charles Augustin de Coulomb (1736-1806) adalah ahli fisika Prancis. Penemu Hukum Coulomb (1785), penemu neraca punter (torsi,1777), insinyur militer, inspektur jenderal pendidikan, dan pengarang. Ia lahir di Augouleme, Prancis, pada tanggal 14 Juni 1736 dan meninggal di Paris pada tanggal 23 Agustus 1806 pada umur 70 tahun. Ia sangat masyhur karena dapat mengukur gaya listrik dan gaya magnetic dengan teliti. Untuk menghormatinya namanya diabadikan sebagai satuan muatan listrik, ialah couloumb (disingkat C). Satu couloumb = banyaknya muatan listrik yang mengalir lewat suatu penghantar selama satu detik, bila besar arus satu ampere.
 Hukum Couloumb berbunyi sebagai berikut:”Gaya tarik atau gaya tolak dua benda yang bermuatan listrik berbanding terbalik dengan kuadrat jaraknya dan berbanding lurus dengan besar masing-masing muatan”. Untuk mengukur gaya listrik, Couloumb mempergunakan neraca punter atau neraca torsi yang sangat peka. Hukum Coulomb adalah gaya yang dilakukan oleh dua benda (yang msaing-masing bermuatan listrik) yang satu dan yang lainnya, adalah sebanding dengan kuat muatan arus listrik dari benda tersebut. Interaksi antara dua benda bermuatan yang dimensi geometrinya dapat diabaikan terhadap jarak antar keduanya. Maka dalam pendekatan yang cukup baik dapat dianggap bahwa kedua benda bermuatan tersebut sebagai titik muatan.

 5. Max Planck



  Max Planck (1858-1947), ilmuwan fisika teori Jerman, yang mencetuskan gagasan awal tentang teori kuantum. Ini lahir dari upayanya untuk menjelaskan teka-teki fisika yang berkaitan dengan pancaran tenaga (energi) gelombang elektromagnet oleh benda (hitam) panas. Pemecahannya ia temukan pada 1901 dengan anggapan bahwa "tenaga gelombang elektromagnet dipancarkan dan diserap bahan dalam bentuk catu-catu tenaga (diskrit) yang sebanding dengan frekuensi gelombang elektromagnet". 
   Satu tenaga ini disebutnya kuanta (latin: sekian banyak: kuantum, bentuk tunggalnya). Dengan demikian, tahun 1901 dicatat sebagai awal bergilirnya bola teori kuantum. Namun, para fisikawan seangkatannya memandang gagasan Planck ini tidak mempunyai makna fisika yang jauh melainkan sekadar sebagai suatu kiat matematika belaka.  Empat tahun kemudian, pemuda Albert Einstein (1879-1955) mencatat dirinya sebagai orang pertama yang menerapkan gagasan Planck lebih jauh dalam fisika. Salah satunya, berkaitan dengan "efek fotolistrik", yaitu teka-teki terbebaskannya elektron-elektron dari permukaan logam bila disinari cahaya (gelombang elektromagnet). Penjelasannya, karena elektron-elektron itu ditumbuk dan ditendang keluar oleh kuanta-kuanta cahaya yang berperilaku sebagai partikel (zarah). Kuanta cahaya ini disebut Einstein, foton. Dengan demikian, cahaya (gelombang elektromagnet) yang mulanya dipandang sebagai gelombang, kini diperlakukan pula sebagai partikel oleh Einstein. Bahwa foton menumbuk elektron, seperti halnya tumbukan dua bola bilyard, kemudian dibuktikan dengan percobaan oleh Arthur H. Compton (1892-1962) dari Amerika Serikat pada 1923, yang mengabadikan namanya dengan peristiwa itu. Gelombang partikel Gagasan foton Einstein kemudian diterapkan Louis de Broglie pada 1922, sebelum Compton membuktikannya, untuk menurunkan Hukum Wien (1896). Ini menyatakan bahwa "bagian tenaga elektromagnet yang paling banyak dipancarkan benda (hitam) panas adalah yang frekuensinya sekitar 100 milyar kali suhu mutlak (273 + suhu Celsius) benda itu". Pekerjaan ini ternyata memberi dampak yang berkesan bagi de Broglie. Pada musim panas 1923, de Broglie menyatakan, "secara tiba-tiba muncul gagasan untuk memperluas perilaku rangkap (dual) cahaya mencangkup pula alam partikel". Ia kemudian memberanikan diri dengan mengemukakan bahwa "partikel, seperti elektron juga berperilaku sebagai gelombang". Gagasannya ini ia tuangkan dalam tiga makalah ringkas yang diterbitkan pada 1924; salah satunya dalam jurnal vak fisika Perancis, Comptes Rendus. 
 Penyajiannya secara terinci dan lebih luas kemudian menjadi bahan tesis doktoralnya yang ia pertahankan pada November 1924 di Sorbonne, Paris. Tesis ini berangkat dari dua persamaan yang telah dirumuskan Einstein untuk foton, E=hf dan p=h/. Dalam kedua persamaan ini, perilaku yang "berkaitan" dengan partikel (energi E dan momentum p) muncul di ruas kiri, sedangkan ruas kanan dengan gelombang (frekuensi f dan panjang gelombang , baca: lambda). Besaran h adalah tetapan alam yang ditemukan Planck, tetapan Planck. Secara tegas, de Broglie mengatakan bahwa hubungan di atas juga berlaku untuk partikel. Ini merupakan maklumat teori yang melahirkan gelombang partikel atau de Broglie. Untuk partikel, seperti elektron, momentum p adalah hasilkali massa (sebanding dengan berat) dan lajunya. Karena itu, panjang gelombang de Broglie berbanding terbalik dengan massa dan laju partikel. Sebagai contoh, elektron dengan laju 100 cm per detik, panjang gelombangnya sekitar 0,7 mm. 

   Tantangan Tesis ini kemudian diterbitkan pada awal 1925 dalam jurnal vak fisika Perancis, Annales de Physique. Namun, luput dari perhatian para fisikawan. Bahkan, para penguji de Broglie hanya terkesan dengan penalaran matematikanya tetapi tidak mempercayai segi fisikanya. Promotornya, Paul Langevin (1872-1946), kemudian mengirimkan satu kopi kepada Einstein di Berlin, yang ternyata memberi rekasi mendukung. Ia memandangnya lebih daripada permainan matematika dengan menekankan bahwa gelombang partikel haruslah nyata. Berita ini kemudian ia teruskan kepada Max Born (1882-1970), fisikawan teori Jerman, di Gottingen. Born kemudian menanyakan kemungkinan eksperimentalnya kepada James Franck (1882-1964), rekan sekerjanya, yang memberi tanggapan mendukung dengan menunjuk pada teka-teki hasil percobaan Clinton J. Davisson (1881-1958) dan asistennya Charles H. Kunsman dari Amerika Serikat pada 1922 dan 1923. Keduanya mengamati bahwa permukaan logam yang ditembaki dengan berkas elektron selain memancarkan kembali elektron-elektron dengan tenaga yang sangat rendah, ternyata ada pula yang memiliki tenaga sama dengan elektron semula. Teka-teki ini kemudian terjelaskan oleh Walter Elsaser, mahasiswa Born, pada tahun 1925 dalam sebuah makalah ringkas dengan menggunakan gagasan gelombang de Broglie. Namun sayang, para fisikawan eksperimen tidak terkesan dengan tafsir ulang ini terhadap data percobaan mereka - apalagi oleh seorang mahasiswa berusia 21 tahun yang sama sekali belum dikenal. Dukungan dan hadiah Nobel Pada tahun 1926 barulah nampak suatu terang! Erwin Schrodinger (1887-1961), fisikawan teori Austria, merumuskan suatu persamaan matematika yang mengendalikan kelakuan rambatan gelombang partikel dalam berbagai sistem fisika. Ini sama halnya dengan persamaan gerak Newton dalam mekanika Newton (klasik) yang mengendalikan kelakuan gerak partikel. Karya Schrodinger ini melahirkan mekanika baru yang dikenal sebagai mekanika gelombang atau lazimnya disebut mekanika kuantum. Penerapannya pada struktur atom berhasil menjelaskan berbagai data pengamatan dengan begitu mengesankan, tanpa dipaksa, sehingga menyentakkan para fisikawan untuk menerima gagasan de Broglie. Dukungan berikutnya datang dari Amerika Serikat, oleh Clinton J. Davisson dan Lester H. Germer (1896 - ?.), yang menerbitkan hasil percobaan mereka pada 1927, bahwa elektron memang memperlihatkan perilaku gelombang. Bukti yang sama tetapi dengan metode percobaan yang berbeda juga dilaporkan oleh George P. Thomson (1892-1975) dari Inggris pada waktu itu. Dukungan bukti-bukti percobaan ini kemudian mengukuhkan penerimaan gelombang partikel yang diikuti dengan dianugerahkannya hadiah Nobel Fisika (tunggal) 1929 bagi Louis de Broglie. Suatu penghargaan keilmuan bergengsi yang patut bagi karya ilmiahnya yang begitu revolusioner

 
6.  Wilhelm Conrad Rontgen



  Wilhelm Conrand lahir 27 Maret 1845 di Lennep Jerman anak seorang pedagang pakaian. Pada usia 3 tahun, keluarganya pindah ke Apeldoorn Belanda. Ia kemudian masuk ke Institut Martinus Herman Van Doorn. Ia awalnya tidak memperlihatkan bakat khusus tetapi sangat menyukai alam dan gemar bertualang di tempat terbuka. Prestasinya juga tergolong biasa-biasa saja dan tak seorangpun menduga ia menjadi ahli fisika dan mencatatkan namanya dalam sejarah dunia sebagai tokoh yang menemukan sinar X (Sinar Rontgen) yang hingga kini makin luas dipergunakan dalam dunia kedokteran. Ia kemudian mendapatkan nobel bidang Fisika pertama tahun 1901.

 Rontgen belajar Fisika Universitas Utrecht tahun 1865. Ia kemudian masuk dalam jurusan Rekayasa Mekanik di Politeknik Zurich Swiss dan bekerja di laboratorium Kundt di bawah bimbingan dosennya-Clausius. Rontgen memperoleh gelar Ph.d tahun 1869, kemudian terbang ke Prancis mengajar di Univesitas Strasbourg sebagai guru besar bidang Fisika. Tak lama kemudian ia pindah ke Jerman tahun 1900 menjadi ketua jurusan Fisika Universitas Munich atas permintaan khusus pemerintah Provinsi Bavaria.
  Karya pertamanya dipublikasikan tahun 1870 tentang “panas gas yang spesifik”, kemudian disusul karya tulis tentang “konsuksi panas kristal. Tahun 1895 ia mempelajari fenomena yang melintasi lintasan arus listrik melalui gas yang bertekanan snagat rendah. Penelitian ini menginspirasi pada penemuan jenis sinar X. Ia menemukan obyek-obyek dengan ketebalan berbeda yang ditempatkan pada cahaya memperlihatkan transparansi berbeda-beda ketika direkam dengan plat fotografi. Ketika dia mendiamkan sebentar tangan istrinya di garis edar cahaya di atas plat topografi, dia melihat gambar tangan istrinya ketika plat itu di cetak. Gambar bayangan tulang dan cincin yang dikenakan istrinya terlihat dalam gambar rontgen pertama. Dalam percobaan selanjutnya, ia melihat bahwa cahaya baru ini dihasilkan oleh sinar kode yang disorotkan pada obyek material. Karena sifatnya tidak diketahui ia memberinya nama sinar X. Baru di kemudian hari, Max van Laue memperlihatkan sinar X memiliki sifat yang elektromagnetik yang sama dengan sinar lain namun memiliki tinggi frekuensi getar yang berbeda.
 Atas penemuannya ini Rontgen mendapat penghargaan luar biasa dari dunia. Jalan-jalan di beberapa kota besar di Eropa di namai sesuai namanya, Ia juga mendapat berbagai hadiah, gelar kehormatan, gelar Dr honoriscausa dari beberapa universitas ternama dunia. Namun kehidupan, gaya dan sikapnya tetaplah sederhana. Ia terkenal orang yang rama, sopan santun, dan tidak segan memberikan bantuan kepada orang lain. Ia juga lebih senang bekerja sendirian dan tidak mengangkat asisten. Rontgen menikah dengan Anna Bertha Ludwig keponakan seorang penyair Otto Ludwig tahun 1872 di Apeldroorn Belanda. Ia meninggal 10 Februari 1923 karena kanker usus 4 tahun setelah istrinya meninggal lebih dulu
  
Wilhelm Conrad Röntgen (27 Maret 1845 – 10 Februari 1923) ialah fisikawan Jerman yang merupakan penerima pertama Penghargaan Nobel dalam Fisika, pada tahun 1901, untuk penemuannya pada sinar-X, yang menandai dimulainya zaman fisika modern dan merevolusi kedokteran diagnostik. Wilhelm Conrad Rontgen penemu sinar X dilahirkan tahun 1845 di kota Lennep, Jerman. Dia peroleh gelar doktor tahun 1869 dari Universitas Zurich. Selama sembilan belas tahun sesudah itu, Rontgen bekerja di pelbagai universitas, dan lambat laun peroleh reputasi seorang ilmuwan yang jempol. Tahun 1888 dia diangkat jadi maha guru bidang fisika dan Direktur Lembaga Fisika Universitas Wurburg. Di situlah, tahun 1895, Rontgen membuat penemuan yang membuat namanya kesohor. Rontgen belajar di ETH Zurich dan kemudian guru besar fisika di Universitas Strasbourg (1876-79), Giessen (1879-88), Wurzburg (1888-1900), dan Munich (1900-20). Penelitiannya juga termasuk karya pada elastisitas, gerak pipa rambut pada fluida, panas gas tertentu, konduksi panas pada kristal, penyerapan panas oleh gas, dan piezoelektrisitas. Tanggal 8 Nopember 1895 Rontgen lagi bikin percobaan dengan "sinar cathode." Sinar cathode terdiri dari arus electron. Arus diprodusir dengan menggunakan voltase tinggi antara elektrode yang ditempatkan pada masing-masing ujung tabung gelas yang udaranya hampir dikosongkan seluruhnya. Sinar cathode sendiri tidak khusus merembes dan sudah distop oleh beberapa sentimeter udara. Pada peristiwa ini Rontgen sudah sepenuhnya menutup dia punya tabung sinar cathode dengan kertas hitam tebal, sehingga biarpun sinar listrik dinyalakan, tak ada cahaya yang bisa terlihat dari tabung. Tetapi, tatkala Rontgen menyalakan arus listrik di dalam tabung sinar cathode, dia terperanjat melihat bahwa cahaya mulai memijar pada layar yang terletak dekat bangku seperti distimulir oleh sinar lampu. Dia padamkan tabung dan layar (yang terbungkus oleh barium platino cyanide) cahaya berhenti memijar. Karena tabung sinar cathode sepenuhnya tertutup, Rontgen segera sadar bahwa sesuatu bentuk radiasi yang tak kelihatan mesti datang dari tabung ketika cahaya listrik dinyalakan. Karena ini merupakan hal yang misterius, dia sebut radiasi yang tampak itu "sinar X." Adapun "X" merupakan lambang matematik biasa untuk sesuatu yang tidak diketahui. Tergiur oleh penemuannya, Rontgen menyisihkan penyelidikan lain dan pusatkan perhatian pada yang terkandung dalam "sinar X." Sesudah beberapa minggu kerja keras, dia menemukan bukti lain seperti ini: (1) sinar X bisa membikin sinar pelbagai benda kimia selain "barium platinocyanide." (2) sinar X dapat menerobos melalui pelbagai benda yang tak tembus oleh cahaya biasa. Rontgen menemukan bahwa sinar X dapat menembus langsung dagingnya tetapi berhenti pada tulangnya. Dengan jalan meletakkan tangannya antara tabung sinar cathode dan layar yang bersinar, Rontgen dapat melihat di layar bayangan dari tulang tangannya. (3) sinar X berjalan menurut garis lurus; tidak seperti partikel bermuatan listrik, sinar X tidak terbelokkan oleh bidang magnit. Bulan Desember 1895 Rontgen menulis kertas kerja pertamanya mengenai sinar X. Laporannya dalam waktu singkat menggugah perhatian dan kegemparan. Dalam tempo beberapa bulan, beratus ilmuwan melakukan penyelidikan sinar X, dan dalam tempo setahun sekitar 1000 kertas Tokoh Ilmuwan Penemu - http://www.tokoh-ilmuwan-penemu.com kerja diterbitkan tentang masalah itu! Salah seorang ilmuwan yang penyelidikannya langsung bersandar dari hasil penemuan Rontgen adalah Antoine Henri Becquerel. Orang ini, meskipun maksud utamanya menyelidiki sinar X, justru menemukan fenomena penting tentang radioaktivitas. Secara umum, sinar X bekerja bilamana enerji tinggi elektron mengenai sasaran. Sinar X itu sendiri tidak mengandung elektron, tetapi gelombang elektron magnetik. Oleh karena itu pada dasarnya dia serupa dengan radiasi yang dapat terlihat mata (yaitu gelombang cahaya), kecuali panjang gelombang sinar X jauh lebih pendek. Penggunaan sinar X yang paling dikenal --tentu saja-- di bidang pengobatan dan diagnosa gigi. Penggunaan lain adalah di bidang radioterapi, di mana sinar X digunakan untuk menghancurkan tumor ganas atau mencegah pertumbuhannya. Sinar X juga banyak digunakan di pelbagai keperluan industri. Misalnya, bisa digunakan buat ukur tebal sesuatu benda atau mencari kerusakan yang tersembunyi. Sinar X juga berfaedah di banyak bidang penyelidikan ilmiah, mulai dari biologi hingga astronomi. Khususnya, sinar X menyuguhkan para ilmuwan sejumlah besar informasi yang berkaitan dengan atom dan struktur molekul. Penggunaan sinar X telah membawa banyak manfaat meski Sinar ultraviolet (yang panjang gelombangnya lebih pendek ketimbang cahaya yang tampak oleh mata) telah diketahui orang hampir seabad sebelumnya. Keberadaan sinar X --yang punya persamaan dengan gelombang ultraviolet, kecuali panjang gelombangnya masih lebih pendek-- masih berada dalam kerangka fisika klasik. Hingga akhir hayatnya Rontgen tak punya anak, karena itu dia dan istrinya mengangkat anak seorang gadis. Tahun 1901 Rontgen menerima Hadiah Nobel untuk bidang fisika, yang untuk pertama kalinya diberikan untuk bidang itu. Dia tutup usia di Munich, Jerman tahun 1923. Email ThisBlogThis!Share to TwitterShare to Facebook - Tokoh Ilmuwan Penemu - http://tokoh-ilmuwan-penemu.blogspot.com/2009/08/ilmuwan-fisika-sinar-x.html
Wilhelm Conrad Röntgen (27 Maret 1845 – 10 Februari 1923) ialah fisikawan Jerman yang merupakan penerima pertama Penghargaan Nobel dalam Fisika, pada tahun 1901, untuk penemuannya pada sinar-X, yang menandai dimulainya zaman fisika modern dan merevolusi kedokteran diagnostik. Wilhelm Conrad Rontgen penemu sinar X dilahirkan tahun 1845 di kota Lennep, Jerman. Dia peroleh gelar doktor tahun 1869 dari Universitas Zurich. Selama sembilan belas tahun sesudah itu, Rontgen bekerja di pelbagai universitas, dan lambat laun peroleh reputasi seorang ilmuwan yang jempol. Tahun 1888 dia diangkat jadi maha guru bidang fisika dan Direktur Lembaga Fisika Universitas Wurburg. Di situlah, tahun 1895, Rontgen membuat penemuan yang membuat namanya kesohor. Rontgen belajar di ETH Zurich dan kemudian guru besar fisika di Universitas Strasbourg (1876-79), Giessen (1879-88), Wurzburg (1888-1900), dan Munich (1900-20). Penelitiannya juga termasuk karya pada elastisitas, gerak pipa rambut pada fluida, panas gas tertentu, konduksi panas pada kristal, penyerapan panas oleh gas, dan piezoelektrisitas. Tanggal 8 Nopember 1895 Rontgen lagi bikin percobaan dengan "sinar cathode." Sinar cathode terdiri dari arus electron. Arus diprodusir dengan menggunakan voltase tinggi antara elektrode yang ditempatkan pada masing-masing ujung tabung gelas yang udaranya hampir dikosongkan seluruhnya. Sinar cathode sendiri tidak khusus merembes dan sudah distop oleh beberapa sentimeter udara. Pada peristiwa ini Rontgen sudah sepenuhnya menutup dia punya tabung sinar cathode dengan kertas hitam tebal, sehingga biarpun sinar listrik dinyalakan, tak ada cahaya yang bisa terlihat dari tabung. Tetapi, tatkala Rontgen menyalakan arus listrik di dalam tabung sinar cathode, dia terperanjat melihat bahwa cahaya mulai memijar pada layar yang terletak dekat bangku seperti distimulir oleh sinar lampu. Dia padamkan tabung dan layar (yang terbungkus oleh barium platino cyanide) cahaya berhenti memijar. Karena tabung sinar cathode sepenuhnya tertutup, Rontgen segera sadar bahwa sesuatu bentuk radiasi yang tak kelihatan mesti datang dari tabung ketika cahaya listrik dinyalakan. Karena ini merupakan hal yang misterius, dia sebut radiasi yang tampak itu "sinar X." Adapun "X" merupakan lambang matematik biasa untuk sesuatu yang tidak diketahui. Tergiur oleh penemuannya, Rontgen menyisihkan penyelidikan lain dan pusatkan perhatian pada yang terkandung dalam "sinar X." Sesudah beberapa minggu kerja keras, dia menemukan bukti lain seperti ini: (1) sinar X bisa membikin sinar pelbagai benda kimia selain "barium platinocyanide." (2) sinar X dapat menerobos melalui pelbagai benda yang tak tembus oleh cahaya biasa. Rontgen menemukan bahwa sinar X dapat menembus langsung dagingnya tetapi berhenti pada tulangnya. Dengan jalan meletakkan tangannya antara tabung sinar cathode dan layar yang bersinar, Rontgen dapat melihat di layar bayangan dari tulang tangannya. (3) sinar X berjalan menurut garis lurus; tidak seperti partikel bermuatan listrik, sinar X tidak terbelokkan oleh bidang magnit. Bulan Desember 1895 Rontgen menulis kertas kerja pertamanya mengenai sinar X. Laporannya dalam waktu singkat menggugah perhatian dan kegemparan. Dalam tempo beberapa bulan, beratus ilmuwan melakukan penyelidikan sinar X, dan dalam tempo setahun sekitar 1000 kertas Tokoh Ilmuwan Penemu - http://www.tokoh-ilmuwan-penemu.com kerja diterbitkan tentang masalah itu! Salah seorang ilmuwan yang penyelidikannya langsung bersandar dari hasil penemuan Rontgen adalah Antoine Henri Becquerel. Orang ini, meskipun maksud utamanya menyelidiki sinar X, justru menemukan fenomena penting tentang radioaktivitas. Secara umum, sinar X bekerja bilamana enerji tinggi elektron mengenai sasaran. Sinar X itu sendiri tidak mengandung elektron, tetapi gelombang elektron magnetik. Oleh karena itu pada dasarnya dia serupa dengan radiasi yang dapat terlihat mata (yaitu gelombang cahaya), kecuali panjang gelombang sinar X jauh lebih pendek. Penggunaan sinar X yang paling dikenal --tentu saja-- di bidang pengobatan dan diagnosa gigi. Penggunaan lain adalah di bidang radioterapi, di mana sinar X digunakan untuk menghancurkan tumor ganas atau mencegah pertumbuhannya. Sinar X juga banyak digunakan di pelbagai keperluan industri. Misalnya, bisa digunakan buat ukur tebal sesuatu benda atau mencari kerusakan yang tersembunyi. Sinar X juga berfaedah di banyak bidang penyelidikan ilmiah, mulai dari biologi hingga astronomi. Khususnya, sinar X menyuguhkan para ilmuwan sejumlah besar informasi yang berkaitan dengan atom dan struktur molekul. Penggunaan sinar X telah membawa banyak manfaat meski Sinar ultraviolet (yang panjang gelombangnya lebih pendek ketimbang cahaya yang tampak oleh mata) telah diketahui orang hampir seabad sebelumnya. Keberadaan sinar X --yang punya persamaan dengan gelombang ultraviolet, kecuali panjang gelombangnya masih lebih pendek-- masih berada dalam kerangka fisika klasik. Hingga akhir hayatnya Rontgen tak punya anak, karena itu dia dan istrinya mengangkat anak seorang gadis. Tahun 1901 Rontgen menerima Hadiah Nobel untuk bidang fisika, yang untuk pertama kalinya diberikan untuk bidang itu. Dia tutup usia di Munich, Jerman tahun 1923. Email ThisBlogThis!Share to TwitterShare to Facebook - Tokoh Ilmuwan Penemu - http://tokoh-ilmuwan-penemu.blogspot.com/2009/08/ilmuwan-fisika-sinar-x.html